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I. INTRODUCTION

In the application of the methods of operation research to problems of

military strategy, it is sometimes necessary to compute the value of a kill -

probability expressible in the form -

P=fff p(m) F(xy,z,u,v,w) dx dy dz, (1)

where -

F(x,y,z,u,v,w) - E(x/u) E(y/v) E(z/w)
2 r - 7 uvw (2)

E(t) H exp(-t 2/2).

Here P is the kill probability. The shots or bursts are assumed to form an

uncorrelated trivariate normal distribution with their mean or expected burst

point set at the origin of a rectangular cartesian coordinate system Oxyz. The

distribution has standard deviations u, v, w in the x, y, z directions, respec-

tively. This configuration may be assumed without loss of generality for any

trivariate normal distribution, since if the distribution is eorrelated and does %

not have its mean at the origin, a translation and a rotation of axes will bring

about the situation which has been described.

A target T, which may be either a point or area target, is assumed in some

arbitrary position in the Oxyz space. The distance m is the radial or slant

range miss distance of an arbitrary burst point (x,y,z) from the target. If K
a target is a point at a position (H,K,L), then m is the ordinary distance

[(x - H)2 + (y - K)2 + (z - L)2]l/2. If T is an area target, m is the minimum

distance from (x,y,z) to points of the target. For area targets m is set to

zero for all burst points (x,y,z) lying within the target.

The expression p(m) is a function of m as prescribed on the basis of physical

conditions or assumptions of the problem. Possible forms of this function which

have practical applicability are: (1) p(m) = I if m R (a constant), p(m) = 0

otherwise; (2) p(m) is a decreasing linear or exponential function of m; (3) p(m)

is a monotonically decreasing step function.

%
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This report describes a procedure for the efficient computation of these kill

probabilities by a high speed digital computer for an important practical case,

that in which the target is a point at an arbitrary position (H,K,L) where,

without loss of generality, H, K, L are nonnegative and the function p(m) has the

first form mentioned above, i.e., p(m) = 0 for m > R, p(m) = 1 for m < R. The

constant R may be thought of as the lethal radius of the weapon.

The function p(m) has the effect of reducing the field of integration to the

interior of the sphere S of radius R with the target (H,K,L) as center, i.e.,

S ; (x - H)2 + (y - K)2 + (z - L)2 
- R2 • (3)

The kill probability P is then given by

fL+R .K+Y CH+X

P= JL-RJK+Y fHXF(x,y,z,u,v,w) dx dy dz, (4)
aL-R JK-Y dH-X

where

X /i - (y - K)2 - (z - 2 ,  y 2 (z -L) 2 . (5) ,S

Rather than carry out the numerical triple integration of Equation 4

directly we make use of an available computer program that yields the probability .6

Pc(r,H,K,u,v) of a shot falling under a bivariate normal distribution inside a

circle in the Oxy-plane of radius r and center (H,K). Pc is the two-dimensional

analog of p.4 ,5,6.

Geometrically, one observes then that P can be obtained by considering

circular slices of S parallel to the Oxy-plane. For a fixed z in [L - R, L + RI,

the xy-integration in Equation 4 over a slice of radius r = v/R' - (z - L) 2 yields

PC. Weighting Pc with I/(V/'n w) E(z/w) and integrating the result over z in

[L - R, L + RI gives P, i.e.,

1 {. L+R .- _

P -I E(z/w)Pc(- ,H,K,u,v) dz, (6)
,.'w 'L-R

where N

r R2- (z - L) 2 , (7)

2 -

"N -'
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or
S

l(L+R)/VT E(,/ t) Pc(r,H,K,u,v) dt, (8)

VT (L-R) //2 w [From (2), E(VNt) = exp(-t 2)]

r = R2 - (L - Vx/wt)2 . (9)

Hereafter, we assume Pc is available and the evaluation of P reduces to the

single integration indicated in Equation 6 or Equation 8.

The symmetry properties of F (see Equation 2) allow H, K, L to always be

taken as nonnegative. Since F > 0 and bounded, the order of integration in

Equation 4 is immaterial. Thus, as long as H is associated with u, K with v, 5fr
and L with w, it does not matter thereafter which is called L and w. For example,

if the order of integration is chosen so that the x-integration is performed last, S

then if initially H = 10, u = 5, L = 20, w = 7, we simply let H = 20, u = 7,
L = 10, w = 5. In this way, we can always refer to Equation 6 or Equation 8 as

the basic representation for P, where L and w are always associated with the z- or

t-integration indicated in Equation 6 or Equation 8 with the understanding that r

the order of integration may have been changed and the variables H, K, L and u, v,

w renamed as in the example above.

II. COMPUTATION OF P

Sometimes we shall write P(R) or P(R,H,K,L,u,v,w) for P. As stated in the

previous section, R denotes the radius of the sphere S given by Equation 3. The

trivariate normal distribution F is defined in Equation 2 by its mean (0,0,0) and

its standard deviations u,v,w in the x, y, and z directions, respectively. By

appropriate normalization of the variables R, H, K, L, u, v, w it is easy to show

that P is in general a function of six independent variables. The program for

computing P is called ELLCOV.

In most cases P will be computed by the numerical integration of Equation 8, m
where it is assumed Pc is available. There are two special cases however where
P can be evaluated in closed form. We shall call these cases A and B. The deri-

vations of the results for these will be given in Appendix A. Case A is found in

3a

-V N~ ' % p'~~>YV''t N Ty '>'> C
L- - - - - - - - - - - - - - - -
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the literature lO . Case B is also probably given in the literature, but we have

not found it.

CASE A: u Zv= ] D /H 2 + K2 + L 2

P = 1 erf(D ) - erf(D -'R) - 2 - ] (D E , (10)2 /-2 /2- wr Wd

D#0

P = erf(R//2w) - 42 E(R/w), D 0 0, (11)

where

d = -2DR/w
2

(12)

erf x 2 Iexp(-t2) dt.

CASE B: u = v and H = K = 0.

Th. t'.o situL!3ns u > w at,d u < w are treated separately.

U > W

1 erf L4 - erf L5 - E(R/u) exp .5[L/(L2 u)12k

(erf F1 - erf S 0 ) , S O < 0 (13)

P 1erf L4 - erf L5  exp(-L 5 2)[exp(SO2)erfc So

2 L2~~- n'

- exp(-2RL/w 2 ) exp(F 1
2 )erfc F 1 ] SO > 0 (14).

P = erf L - I E(R/u) erf(RL2 /V2-w), L = 0 (15)

U < W '

p = 21erf L4 - erf L 5  exp(--L5 2 ) daws(F) - exp -1 daws(S 0  (16)

2 L2 w1
2 7T L2

P = erf L4 - 2/(N/- L 2 ) E(R/w) daws(RL 2 //2w), L = 0, (17) %

4
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where

rX 4
daws x E(v2-t) J exp(t2 ) dt (Dawson's integral [1; p. 298], [3])

(18)

erfc x E 2/-v f exp(-t 2 ) dt I - erf x,

L2 = - (w/u)2 1 (19.1)

L = (L + R)/( w) (19.2)

L5 = (L - R)/(V2w) (19.3) .

So = L/(v/2wL2 ) - RL2 /(-v/w) (19.4)

F1 = L/(V'/wL2 ) + RL2 /(v w). (19.5)

In order to achieve improved accuracy, Equations 10-19, are used in modified form

in the computing program, ELLCOV. It is also not difficult to show that Equa- e

tions 13, 14, 16 approach Equation 10 as u w.

If cases A and B do not apply an attempt is made to improve efficiency by

sensing if Pc is numerically constant over the effective range of the t-integra-

tion in Equation 8. Call this case C. We discuss this case below after specify-

ing the effective range of the t-integration, (see Equation 29).

In general, excluding cases A, B and C, P is computed by numerical integra-

tion. The 24-point Gaussian quadrature rule [1, p. 916] is used for this purpose

with, in some cases, an additional 24-point Gaussian.

The most time consuming part of computing the integrand in Equation 8 is

the evaluation of Pc, the elliptic coverage function4 ,5  In most cases Pc is

obtained from the subprogram function ELLCV. In the special situations that

u = v or H = K = 0, (referring to Equation 8) Pc is called the circular coverage

function, CTRCV. and the generalized circular error function, GCEF, respective-

ly4 ,5 ,6 . Both are computed by the subprogram CIRCV. In these special situations,

a parameter V is set to 1 and 0, respectively, otherwise V = 2. When V = 0 or 1,

PC can be computed about 10 times faster than the case when V = 2. Hence, since r

5
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the order of integration in Equation 8 can be changed, the appropriate inter-

changes are always made to make V = 1, if possible. If this cannot be done

(u v, v w, w u) then an attempt is made to obtain V = 0. However some

instability can appear in this case, when computing GCEF, if

1(-5) > u/v > 1(5). (M(N) -lO N ) (20)

Hence if V = 0 and Inequality 20 holds then the computation of Pc is carried out

as described below for the case V = 2.

If neither V = 1 nor V = 0 can be brought about then the order of integration

is determined by finding the largest ratio a/b < 1, where a, b take the values of

u, v, w. The pair from u, v, w giving the largest ratio (<1) is then used in the

first two integrations (the evaluation of PC ) with the corresponding H, K, L

values. For example if u = 2, H = 0, v = 5, K = 2, w = 3, L = 6, then the a/b

ratios are 2/5, 3/5, 2/3. Hence v and w, K and L, are interchanged, the integrand

in Equation 8 becomes

exp(v/ t) P (r,0,6,2,3), (21)c

where

r = R2 - (2 - V'/5t) 2 ; (22)

the limits of integration become (2 - R)/5V[2, (2 + R)/5vr!. If the two largest

ratios are equal, then the one with the largest denominator is used to fix the

first two integrations.

Choosing the integration order in this way permits the most accurate computa-

tion of Pc. This remark is based on an empirical study in Reference 4, where it

was noted that the numerical quadrature of Pc is best when the standard deviations

are nearly equal and not small. We mention at this point that the program ELLCV

has been up-graded over its description in Reference 4. Namely, the accuracy for

has been increased from 6 to approximately 8-decimal digits. This was required

in order to deal effectively with the inverse problem discussed in Section III.

It is possible, in some cases, by the tests given below to determine if

P < 2.5(-8) or P > 1 - 2.5(-8). In such situations P is set to zero and one,

respectively. The tests below are discussed in Appendix B.

6
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Let Z4 =2.5(-8), M max(u, v, w). -

Test #1:

P set to 0 if R3 <- 1.5-\,/2T uvwZ4

Test #2:

P set to 0 if R2 < Dand R3 exp(-c 2  :S 1.5\,27 uvwZ4,

a D-R (/ ) D = VH 2 +K 2 +L 2

Test 13:

P set to 0 if h -R > VC/TF2, where F2 = 4.262, h =H, K, L, _

and T equals the corresponding u, v, or w.

Test #4: .

P set to 1 if P=P(R,H,K,L,M,M,M) 1 - Z4, where

Pis computed from Equation 10 or Equation 11. ~ ~

For efficiency it is important to try to reduce the number of times PC is

called by ELLCOV. We note that r in Equation 7 has the same value for two values

of z, i.e., z = L t (R - y), where 0 : y < R. This observation in many cases

reduces by half the number of times PC needs to be computed. Indeed, we express

Equation 6 as the sum of two integrals, the first has the limits of integration *

L -R to L and the second L to L + R. In the second integral, the substitution

Z =2L - z is made with the following result .. ,6

P /2LT E(z/w) + E[(2L -z)/w] P C(r,H,K,u,v) dz, (23)
L-R %

or, in terms of Equation 8,

1 B5
P = xp(-t2) + exp[-(NV2L/w -t)

2 11 P C(r,H,K,u,v) dt, (24)

7
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d,

where

r L R2 
- (L - V/wt) 2

A5 = (L-R)/(v25w) (25)

B5 = L/(N/w).

The number of Gaussian abscissae used to integrate Equation 24 is fixed

at 24, and in some cases at 48. Greater accuracy may be obtained if the total

integration interval, B5 - A5 (= R/(v2 w)), can be reduced. Indeed, consider

the infinite volume Ve bounded by the planes Izi = aw, where a is uniquely defined

by A

faw
I/ (2Tvf-2ziuvw)' E(z/w) dz E(y/v) dy E(x/u) dx = c -, (26)

--aw- -
E: > 0,

or

erfc (a//2) = s. (27)

The entire region above the plane z = aw contains c/2 of the distribution F given

in Equation 2. Some typical values for a as a function of c are

= 5(-8) a 3.8545,/2i 5.45109

c = 5/3(-9) a 4.262N/2 6.02738. (28)

In ELLCOV we use the latter. The integration over the sphere S, as indicated in

Equation 6, therefore can be reduced to the intersection of S with Ve (S qVe). In

many cases this permits the z (or t) interval of integration in Equation 6 (or

Equat-on 24) to be shorterned. The final results for Equation 24 are summarized by

B5 L/V2 w if L :S aw

a/ if L > aw

(29)

A5 = 2-a/V/ i if L-R < -aw

(L- R)/V2 if IL - RI L a

8I
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O if L < aw (30)

W9 = (3)S
1 otherwise.

(Note: P set to 0 if L - R > aw.--Reduces to Test #3, a =N/2 F2)

The parameter W9 is used in ELLCOV to indicate if the second exponential

in Equation 24 can be ignored. The case W9 = 1 implies the exponential can be

dropped and W9 = 0 implies it must be retained. The case for W9 = I occurs when

the integration from L to L + R in Equation 6 is negligible since the center of

S lies outside S n Ve, i.e., L >_ aw.

A further effort is made to reduce B5-A5 by attempting to increase A5.

Let the integrand in Equation 24 be denoted by G(t) and the increasing Gaussian

abscissae by tj, j = 1,2,...,24. If G(A5) < (-10) then G(tj) is evaluated for

increasing j until G(tn) > 1(-10). Then A5 is set to tn_1 and new tj are gener-

ated based on the new A5. S.

Since G(t) has an infinite slope at t = (L - R)/(V/-w), it may happen that

accuracy is lost when G(A5) and G(tI ) differ significantly. Once A5 is deter-

mined, as described above, if G(t1 ) > 1(-7) a 24-point Gaussian integration is

carried out from A5 to t,, followed by another 24-point Gaussian integration frci

tI to B5. In most cases G(tI ) < (-7), in which case only the 24-point Gaussian

integration from A5 to B5 is used.

Another sensing to expedite the computation determines when Pc can be set

to one from some t to B5. Using the procedure given in Reference 4 for testing ,

whether Pc > 1 - £, we have Pc ! I - 1.3(-8) if

r [ [R2 - (L - V'2wt)2]1/2 > -H 2 + K2 + bs E G, V2-wt- Lj < R, (31)

where

s = max (u,v), b = 6.02738.

Therefore,

IL - 4 wt < (R2 - G2)112 a U,

or

(L - U)/(V w) t t (L + U)/(2 w), t= (L -U)/ w. (32)

9
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Again, the interval of integration over which the Gaussian quadrature is needed

can be reduced when Relation 31 holds and Equation 24 becomes

I~t
P = i/V T I E(,/2t) + E[(2L - -f2 wt)/w] P c(r,H,K,u,v) dtA5 C

(L+U) /,/2 w

+ I (L- U/' E(v'-t) dt. (33)I/ (L-U) /I\/2-w

We also note that

- (L+U)/v/fw ex(t)d

Idt =

1/2 erfc[(L - U)//2w] if (L + U)/V2w > F2

1/2)erf[(L + U)/\/2w] - erf[(L - U) v/2w]1, otherwise.

Now that the effective range of integration for Equation 8 has been defined

by Equation 29 we can return to case C. If A5 < - F2 then it is possibie for Pc

to remain essentially constant over the effective range of integration.

Let r(t) -= R2 - (L - Vwt)2. Then since r(t) is an increasing function

of t, we take PC as a constant if

Jr(A5) - r(B5)1 < 1(-8)r(A5), A5 < -F2. (-4.262)

In this case P is given by

P = erf(F2) Pcj.5[r(A5) + r(B5)],H,K,u,vI.

After much experimentation which included an extensive look at Simpson's

rule, the 24-point Gaussian integration scheme was chosen as the basic quadrature

procedure. For small P, a lower Gaussian procedure would have sufficed, n,. Or-

theless it was decided for simplicity to use the 24-point Gaussian throughout.

The integrating routine is called GQUAD. As a matter of interest, GQUAD allows

for the interval [A5, B5] to be subdivided into a set of equal subintervals with

the same Gaussian order formula 6,8,12,16,20, or 24 applied to each subinterval.

This feature of GQUAD however is not used in ELLCOV.

10
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Extensive testing of ELLCOV showed that P can be obtained with approximately

8-decimal digits, even though we conservatively claim 6-decimal digits. There

does not appear to be any significant limitations, for realistic values of the

normalized off-set distance V/(H/u) 2 + (K/v)2 + (L/w)2, and the quantities u/v,

v/w, R/w can have values as large as 105.

Below, Table I contains some numerical results from ELLCOV. It gives values

of P to compare with approximations given previously be F.E. Grubbs. 8 ,9 A listing

of ELLCOV in HP-BASIC is given in Appendix C. [

ik

%t

0

0.
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TABLE 1

____R=1 K L 0

02 = 1/2 02 = i 02 = 2 02 = 3

WH .890 .607 .313 .204

H = 0 P .888390 .608375 .317730 .198748
MC .885 .615 .320 .210

WH .807 .530 .307 .205
H = .5 P .736060 .501231 .277180 .179569

MC .755 .505 .315 .195

WH .337 .261 .174 .127

H = 1 P .337133 .269975 .183329 .132299
MC .353 .320 .205 .135

WH .000 .001 .004 .006
H = 2 P 3.0986(-3) 1.59356(-2) 3.3474(-3) 3.85359(-2)

MC .000 .020 .035 .040

WH .000 .000 .000 .000
H = 3 P 1.48(-7) 7.569(-5) 1.7473(-3) 4.7661(-3)

MC .000 .000 .000 .010

u = 2v = 2w

WH .868 .630 .388 .279
H = 0 P .876323 .647542 .375392 .246952

MC .860 .670 .400 .250

WH .739 .554 .364 .269
H = .5 P .747518 .569818 .346921 .233510

MC .770 .555 .400 .285

WH .432 .372 .287 .233
H = I P .437088 .385964 .273711 .197402

MC .435 .405 .290 .235

WH .019 .055 .092 .104
H = 2 P 3.08781(-2) 7.57294(-2) .105474 .100705

MC .040 .090 .125 .105

WH .000 .001 .011 .023
H = 3 P 1.679(-4) 4.2614(-3) 2.11601(-2) 3.26805(-2)

MC .000 .000 .035 .050

0 2 = u 2 + v 2 + W2

WH--Grubbs' approximation, MC--Monte Carlo (200 shots),
WH and MC results taken from [8], [9]. P computed by ELLCOV.

12
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TABLE I (Cant)

R= 1, K L 0

_____ 2 =1/2 02 = 1 = 2 02 = 3

WH .878 .618 .350 .236
H = 0 P .878302 .625938 .351727 .229160

MC .890 .635 .365 .275

WH .738 .524 .314 .219
H = .5 P .735871 .531421 .315323 .211615

MC .735 .520 .395 .270

WH .378 .308 .221 .171
H = 1 P .378261 .319040 .226834 .166578

Mc .380 .355 .265 .210

WH .005 .021 .044 .055
H = 2 P 9.5532(-3) 3.40282(-2) 5.94781(-2) 6.36591(-2)

MC .015 .040 .050 .070

WH .000 .000 .002 .006
H = 3 P 4.86(-6) 5.545(-4) 6.0278(-3) 1.26241(-2)

MC .000 .000 .000 .010

u = 2v = 3w

WH .740 .640 .415 .318
H = 0 P .869274 .659413 .407256 .279152

MC .774 .662 .412 .275

WH .739 .568 .390 .299
H = .5 P .747340 .586033 .378893 .265242

MC .750 .584 .366 .266

WH .447 .392 .312 .259
H =1 P .452305 .409374 .305022 .227522

MMC .452 .408 .306 .223

WH- .025 .068 .109 .123
H = 2 P 3.96655(-2) 9.20037(-2) .127553 .123078

MC .044 .087 .122 .120

WH .000 .002 .015 .030
H = 3 P 3.428(-4) 6.6584(-3) 2.94238(-2) 4.40764(-2)

MC .001 .009 .029 .046

0Y2 =-U2 +V 2 + W 2

WH--Grubbs' approximation, MG--Monte Carlo (200 shots),
Last MC Group (u = 2v = 3w) 1000 shots,

WH and MC results taken from [8], [9]. P computed by ELLCOV.

13
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III. COMPUTATION OF R (The inverse problem)

In this section we describe a procedure for finding R given P, H, K, L, u,

v, w. For fixed H, K, L, u, v, w the radius R is a monotone increasing function

of P and thus unique for a given P. The procedure for finding R requires the

computation of P, as described in the previous section. Since that basically

involves a time-consuming numerical triple integration a large effort is made

to obtain good early approximations for R. Once such approximations are found

uniform stepping, halving, Regula-falsi, and King's root finding procedure 1 1 are

used to refine the estimates for R. The objective is to obtain R correctly to

approximately 6-decimal digits.

In the discourse some details are omitted. They may be obtained from a

detailed study of INVELLCOV, the BASIC program for computing R. A listing is

given in Appendix C and a flowchart is shown in Figure 2 on page 18.

The unknown value of R will always be contained in a known interval.

Initially crude lower and upper bounds, Rmin and Rmax, are found for R.

Let I H max[3v 7 2 Puvw, (Vrn PM)3], M = max(u, v, w). Then

11/3 if P : 1./2 i

R a R min = 11/3 if P > 1/2 and I > D (H2 + K 2 + L2)3/1 (34)

D if P > 1/2 and I i D 3.

The derivation of Equation 34 is similar to the methods used for deriving Tests #1

and #2 of Section II. See Appendix B.

14
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For Rmaxt two arrays A6(j), B6(j), j =1,2....l0 are used.

A6(1) = 5(-6) B6(1) =.0266

A6(2) = 1C-4) B6(2) =.0723

A6(3) = .01 B6(3) =.339

A6(4) = . 1 B6(4) =.765

A6(5) = .3 B6(5) = 1.1933

A6(6) = .6 B6(6) = 1.717

A6(7) = .9 B6(7) = 2.5005

A6(8) = .999 B6(8) = 4.03356

A6(9) = .999999 B6(9) = 5.538

A6(10) =1 B6(10) = 10

The element B6(j)M gives the radius of a sphere centered at (0,0,0) for which

A6(j) = P(B6(j)M.,,,,M,M,M). Then

R : R mx= D + B6(J)M, M = max(u,v,w), (35)

where J is the minimum integer j for which P : A6(j). The plausibility of Equa-

tion 35 is easily seen from its 2-dimensional analog. In Figure 1, the inner

ellipse contains P of the distribution. The outer ellipse with semi-axes qu, qv

contains A6(J) of the distribution. Then, from the figure, one easily concludes

R < VH2 + K + qs, where s =max(u,v) and q corresponds to B6(J).

qu

x qv

FIGURE 1: USED WITH (35)

15
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Rmin and Rmax establish crude bounds for R. An improvement is generally

obtained by using an estimate for R, call it Rg, given by F.E. Grubbs. 8 ,9 His

estimate depends on a percentage point of the chi-squared distribution which is

available through the subprogram GAMINV. This subprogram is described in Refer-

ence 7. The quantity actually given by Grubbs is Rg2 which estimates R2 and is

given by

Rg 2 = W41[x(4/V5,P) - 4/V5]W 2 + NJ, (36)

where

W4 = u 2 + v2 + w2  (37.1)

N = 1 + D2/W4 (37.2)

V4 = 2 1 + 2 + [I + 2 +- [1 + 2 - (37.3)
W4 

2  UI W4 
2  V W4 

2

T 5 = 8 I 3 1i + 3 _ 3 + 3 + i + 3 W (37.4)
W4 3W43 W4

W2 = T5 /(2V 4 ) (37.5)

V5 = T 5
2 /V4 

3, (37.6)

and x(A,P) satisfies

I x(A,P) A-1
= F(A) J exp(-t) t dt, A = 4/V 5. [1; p. 260] (38)

If

Rmin 2 < Rg2 < Rmax2 ,  (39)

then Rg is accepted as an improved estimate for R. If Equation 39 holds and

P(Rg) < P, then Rg is stored in Q4 and Rmax is stored in Q5; if P(Rg) > P, then

Rg is stored in Q5 and Rmin is stored in Q4. Generally Q4 and Q5 bound R with

Q4 i. R i Q5 (When King's procedure is used Q4 and Q5 still bound R, but their

roles as lower and upper bounds may be reverscd.). Refinements to Q4 and Q5 are

obtained by using the procedures mentioned above. Some of the details are shown

in the flow chart of Figure 2. A flow chart for King's root finding method is

given in Figure 3 on page 19.

16I
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NOTATION FOR FLOWCHART OF FIGURE 2 AND BASIC LISTING

Rt denotes true value of R for a given value P = P3. P3 = P(Rt)

C2 = 10 X8 (1 - P3), P3 < .5; C2 = 10 X8 P3, P3 > .5
E4 = 0, 1(-6) < P3 < .999999; E4 = 1, 1(-6) > P3 > .999999
E5 = 0, Less than 30 iterations to find R3; E5 = 1, 30 iterations are used to

find best estimate for Rt. Final estimate R3 may not be accurate to
6-decimal digits.

Hx - H of text; Hy - K of text; Hz - L of text.
16 - R3 with P4 < 0
17 - R3 with P4 > 0

18 - P(R3), I.Zest value of P
19 - Increment used in stepping procedure. 19 = ±.2 (Q5 - Q4).
KO H 2 + K 2 + L2 ; K2= VKO
P- Previous value of 18 - P3

P3 - Input value of P
P4 - P(R3) or P(R3) - P3
P5 - P(Q4) - P3

P6 - P(Q5) - P3
P7 -P5 or P6

- Latest value of P > P3

P - Latest value of P < P3
Q4 - See Section III. Latest estimate for Rt such that P(Q4 ) - P3 < 0.
Q5 - See Section III. Latest estimate for Rt such that P(Q5 ) - P3 > 0.

Q9 - Contains number of iterations used to estimate Rt.
R -Latest estimate for Rt
Rg - See Section III. Estimate from Grubb's approximation for Rt.

Rc - See Section III. Lower estimate for Rt from ELLRC.

R3 - The latest estimate for Rt.
R4 - The next to latest estimate for Rt.

Rmin - Starting lower bound for Rt. Rmax - Starting upper bound for Rt2 .

Sx - u of text
Sy - v of text Y
Sz - w of text
M - max(u, v, w)

T6 - Number of iterations used to obtain Rc using ELLRC.
X8 - See Section III. Used to exit INVELLCOV if IP4(R3) - P31 X8. %

• d'

%
17
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J=Qg=o
P.in Q4 START
Rmax Q5

yes
P450, J=3? R2! (Q4)2 or

no Cru 9 yes
P4<0, J=5? no R bbs R g2 (Q4 ELLRC

g _ 5
r 2 )2 or

r3<.1(18)? J=JTI 9-05 R

P(P 9

no 5, e.- P3> . 2?
RECULA Yes
FALS1 P4 Q9=Q9+1 no
no

FR3-R4 005 R3 no 18<5(-9) R=R3 R3=Ror CIQSQ 1>.IR?
.001P3? 411.111? i(Q5+Q4)

yes

'i (Q5+Q4 P<.2 or 19=.2(Q5-Q4) EXIT
PF>P3 P37 yes R=()4,P7=P5 E5=1

J 2= 1 no yes
1(-6)R3? no t9=-.2(Q5-Q4

R=Q5, P7=P6 R=R4-19 Q9 > 30?

EXIT no f no

Y es J2=J2+1 yes
REGULA RECULA yes 17 - 16 1 > .0 0 5 R J2=5? PP7,07

yes " 7-16 ' I
FALS1 or

FALSI I r6-1751 > .001 P no yes
noYes P>51(-9 P3<.2 and

; r6 _P 0'
ITS/P3-5.051

[117 161 < no 
10

Q9>30? EXIT >4.95?
- 15(-7)R3? 

Yes F5=1 1R3=VQ5+Q4)1

no

Yes 1114- R31' no yes
1( 6)RI and Q9,,207 R=R3 no Yes EXIT

11 41 CV 1$05 Qls) Q9>307 F5=t
no

Yes 117-161< King's
L5(-7)!13? Method. R3 "IQ5-Q41<

1( ) 11 ?
1(-6)R3?

yes

Not Shown: P(R) computed by ELLCOV. If jP(R)-P3j:LX8 then R is

an acceptable estimate for Rt. INVELLCOV exited.

FIGURE 2. FLOW CHART FOP INVELLCOV

18
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Input: Xo' fo' Xl' fl) (f 0flI <  O)

S ART

(Xo1fo0)by(xl,fl), new x2  x : 2  x I  1 f

(XlfI)by(x 2f2). Compute f2 I2 f - fO 1

Ye IInterchange

(x O f f ) a n d (x 1'f)09
no *,

(x0,fo)by(x 2,f0 f) __

yes no

f If2 <0? -E get new x 2

Compute f2

x2  latest estimate for -x, fn f(Xn )  f( ) = 0

FIGURE 3. KING'S ROOT FINDING METHOD FOR f(x) '-

p,.,

'
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